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Abstract. The introduction ofan inversesequenceof Poissonspaces,determinedby
aKac-MoodyLiealgebra, allowsto definecompletelyintegrablesystemsofP.D.E. ‘5

described by the coadjoined of an inverse limit group and to extend the inte-
grability techniquesofM Adlerand P. vanMoerbeketo systemsofevolution equa-
tions. TheP.D. E. ‘s appearwhen theflows are written along theintegral curveofa
fixed flow. This is achievedby meansof a momentumoperator which providesa
geometricaldescriptionofthe systems.

INTRODUCTION

The main techniquewhich is usedby M. Adler and P. van Moerbeke to deter-
mine complete integrability is the descriptionof the equationsas the adjoint

action flows on a gradedLie algebra,which is embeddedin a Kac-Moody-Lie
algebra.The integrationis then obtainedby the linearisationof the flows on the
Jacobivariety of an algebraiccurve. Completelyintegrablesystemsconsistingof

non linear evolutionequations(of theKdV-type) havebeenstudiedby a growing
list of people, see for example [1] [7] [9] [12] [14] [15] [16] [19] [22] [23]. The
equations are written either in Lax form or in Zakharov-Shabat form; we will

call the latter Bdcklund equations.

The main purpose of this paper is to show that one is able to extend the

approach of M. Adler and P. van Moerbeke [2] to the latter systems.

This will be done in two steps. First one remarks that the introductionof an

inverse sequence of Poisson spaces allows one to extend the finite dimensional

systems of L2] into infinite dimensional ones. Next a jet bundle of C~-functions,

This artichie is based on lectures given by the Author during the Trimester on Mathematical
Physics at the Stefan Banach International Centre, Warsaw, Sept. - Nov. 1983.
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or a subset of it. is consideredas the areaon which the evolution L’~ttEitiohh5 ire

describedas specialvector fields. A map defined on this spacewith valuesin the

inverse sequenceof l’oisson spacespulls hack commuting flows. definine a _oiii-

muting system of partial differential equations. This map w ill be called a 110)-

mentumoperator.
The paperis organizedas follows. We study first the inversesequenceof Pois-

son spacesconstructed from the Kostant-Adler-Symestheoremapplied to a kac-

-Moody-Lie algebra.

The next paragraphdeals then with the definition of a inonientum operatoi

P describingP.D.E.’s on a subsetS of a given function space~ . The only role

of S is to restrict ~ suchthat the elementsof S’ aremappedby P into the integral

curvesof a Hamiltonian vector field of the Poissonstructures.We will call S the

constraint equation. The inverse sequencestructure ot the space lnii ~ de-

termines by meansof the operator P an inverse sequencestructure on S

c C’ C C’ C C’ -- where the C’ are C~-integrableP.I).I:,’s. It is this inverse

sequencestructure which will finall’, permit to determinethe complete liltegra-

bihit of theequations.

Becauseany momentumoperatorP pulls back thead—invariant I onusI roni un~

into constants,onefinds that a given P fixed a specificorbit ni each .~ I len-

cc the momentum operators,on S. are paranietrisedbs [lie ad-invariant torni~) n I

lini .~ .. For each value of these forms the operator ‘3 H detcriiiniesa sped li~

alvebraiccurve viven by Det ( P(\ 1 - - Id = 0: \ is the eradineparameterof
C!

lim Jr’.. If on a given C’ the imageof P statisfies the regularity conditionsgive n

in [2], one is able to determinea bi~ectionof this image and a subsetof the

Jacobianof this curve. In thesecasesone may construct finite tone solutions

8]. \Ve will not pursuethis aspectin this paper.

The different niomentuin operators.,which define a given evolution equation,

determine different stratifications of solutions lor tins equation in the lri\ cisc

limit. We also remark that the construction.as it is presentedhere,is purely local.

(;Iobil extensionsof thesolutionsmay haveohstructioiis.
The third paragraph then indicateshow momentumoperatorsare constructed

in practice. Two basic lemmasaregiven togetherwith sonicgeneralisations.It is

clearthat theexistenceof suchoperatorsis at the heartof this approach.

The last paragraphwith examplesshows the power of thus approach in the

construction of such systems.Examples of 1-parameterfamilies of integrable

systemsaregiven as we]l assystemsin more variables.

The problem of reduction of integrable systems,which is a very delicate

question- becomesmore transparentin this formulation. It is shown in t lie second
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paragraph that reductions can be obtained by choosing smaller orbits in the Pois-

son space, by taking different decompositions of the Lie algebra or by means of

adjoint actions on the momentuni operator.

The present approach is different from the other approaches in that the Poisson

structure of the infinite dimensional Lie algebra is taken as the fundamental

structure. The approach is very close to the work of Vinogradov and B. Kuper-

shmidt [13] in that the jetbundle is considered as the appropriate space to descri-

be commuting partial differential equations. This is in contrast with the work

of A.G. Reyman and M.A. Semenov - T. Shansky [19], where some specific

function space has to be selected to make the Lie algebra into a dynamical Lie

algebra. The work of V.G. Drinfel’d and V.V. Sokolov [7] reliesvery heavily upon

this approach. Our approach is in some ways very close to the work of G. Wilson

[22]. One of the main lemmas is due to him. But is has to be remarked that the

flows on the Lie algebra are not considered in the same way, nor is the approach

of I.M. Gel’fand and L.A. Dikii used to describe complete integrability. Indeed

it is the inverse limit space structure which allows one to define the exact number

of equations needed at each grading to define integrability of one the flows in

terms of some initial data.

A short sketch of the evolution of the ideas will help to situate our approach

within the different approaches to this problem.

Initially we are interested in equations which can be written in the form

(1) D~A—D~B+[A,B]=0

where A and B are (n x n)-matrices with coefficients in the ring of functions

one somejetbundle J. and are total derivatives with respect to the coordi-
nates (x, t) on an open subsetof 1R2. These equationsappear in the work of
Wahlquist and Estabrook [21] and are very closely related to the formulation

of a Bãcklundproblemin the senseof Goursat [10] for a P.D.E. [16], [20], [4].
If a representation p : g 1 (n, IR) —((N) is choosen of g 1 (n, IR) in the Lie algebra

of vector fields on a manifold N, with coordinates (v), one is led to the considera-

tion of the system

(2) v=(poA)(v)

(3) u~= (p oB) ~

Equation (1) is in some sense the compatibility condition for the system (2),

(3). If one is able to eliminate the variables of the fibres of J from this systemone
is left with a P.D.E. on (u). The system (2), (3) is then a ~<BäckIundtransforrna-

tions in the sense of Bbcklund-Bianchi-Clairin. As a consequence of the enormous

interest in evolution equations in contemporary practices one prefers, roughly
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speaking, that equation (2) be a contact transformation. Equation (3) then

becomesaI’ter elimination the modified equation of (I). The classical example

is the KdV-equation written as (I ). Equation (2) is then the Miura transforina-

tion and(3) is afterelimination the MKdV-equation [6].

The famous Gardner transformation consists in the introduction of a para-

meter in (2), which allows one to invert this equation formally. Tins then pro-

vides an infinite set of conservation laws and symmetries, which are the basic

ingredients for integration. It is this idea which is at the basis of our approach.

The introduction of a parameter implies that equation (I) is written on a Kac-

-Moody-Lie algebra. The equations (2) and (3) become flows on this algebra. If

one of the flows, for example equation (2), is inverted by analogy with the

Gardner transformation, one obtains a map from a jet bundle into this Lie alge-

bra. This map is a momentum operator which we define in the second paragraph.

Finally we remark that the theorems in the paper are not given in their greatest

generality. This is done in order to keep the paper readable and to facilitate the

insight in the constructions. As is shown in the examples. generalisations are

easily obtained without fundamental alterations of the theorems and definitions.

Most theorems and propositions are written for maps in C~(JR”’. JR”). Also

the Lie algebras are mostly over JR. This restriction is not essentialandan exten-

sion to the complex case is obvious.

I. IN VERSE SEQUENCESOF POISSON SPACES

The setting of this paragraphis the Kostant-Adler-Symes(K.A.S.) theorem.

which we will rephrasewhile defining thenecessaryconcepts[2].

Let g be a finite dimensionalLie algebraequippedwith a non degeneratead-

-invariant bilinear form (. , .) and let g = k ii be a decompositionwith k and ii

both Lie subalgebras.The subspacek’ (resp. n~) is the orthogonalsubspaceto
k (resp. n) with respect to (. , .). Hencek’ is identified with the dual of n. By

this identification the subspacek’ inherits a Poisson structure given by the

(Kirillov-Kostant) coadjoint action of ii. coad (n), on k’. This action is given

by ~ [p,, V ii. fl, ~ e k’. lie .~(k’) and V the gradient defined by (. . 1

(resp. p) denotes the projection on k’ (resp.n) defined by the decomposition

n’ (resp. k ±n).

Let W C k
1 be a submanifold, invariant under coad (n) and let d( WI be the

ring or C~-functios defined on a neighborhood of W. which are invariantunder

coad (g). Then d (W) is a system of commuting Hamiltonians on W. Moreover

if H belong to d (W), then the corresponding Flamiltonian vector field is given

by [~, ~k ~ H] ~ ~e W and ~/c the projection on k along ii.

One remarks that V H is a section of the k-vector bundle over W C k’.
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This theorem will be applied to decompositions of a Kac-Moody-Lie algebra

which allowsus to constructaninversesequence.

A Kac-Moody-Lie algebra2’ constructedon gin given by

e g and m E ~ arbitrarYj.

and equipped with the bracket [~ E, A’, ~ ~. A’] = ~ [~, ~.] A~” [2] [11] [18].
/ I,, /

The bilinear form (. , .) on g defines an infinite set of ad-invariant forms on
h given by

= ~ ~
i+i= 12

Each product (~, ~ for ~, ~ e 2’, consistsnecessarilyof a finite number of
terms and hence is well defined. All ad-invariant polynomials (more specifically
the trace forms) on g extend in the sameway to 2’. If (. , .) is the Killing form
on g, then (~ .)~is the Killing form on 2’[2].

We define the truncated subspaces2” by

2’~=~II~

The subalgebra of positive powers (resp. negative powers) in A of 2’’ is denoted
by 2~ (resp. 2”) and the zeroth order part by 2’s. Similar definitions are

used for 2.
Multiplication by A on 2 defines an ad-invariant map 2 -+ 2, namely

X.adE = ad~.A.This multiplication allows one to define the following limiting
system

2”’~ ~—~-— 2’ ~~—--- 2” + i

where the projection ir stands for multiplication by X~.The inverse limit
2’ = lim 2~is obviously different from 2.

4-

In applying the K.A.S.-theorern we will mainly be interested in the following

type of decomposition satisfying:

(i) 2’= n ~ k, n C 2’_ ° 2’~. n n 2’P = 2’P for some ~ ~ IN.

(ii) For any ad-invariant bilinear form of maximal rank ~ the

following inclusion is a strict inclusion:

k”’ C k”’ + ~, with k”’ = k’ n 2”. p e IN.
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1.1 PROPOSITION. Let 11~~H, C .~ (k ‘i’) and ~ : k”’ k ‘~ theproject/oil iiiap

Then ~ 2H1, “2 ~ ~*Ht, ~*H2]i, where - Q (resp. . ‘ is the Poisson

bracket determined hi ( . - )~(resp. hi’ I ‘ . on the ring of functions on

kiP+t/ker ~).

We denotek
1 = him k’~.

4-

Proof Let (- , ‘)~ be given and define n~, subspaceof n, such that the form
is non degenerateon ±k~.Let k~’andnt~1’be their orthogonals and

~0 (resp.V~)thegradientwith respectto (‘ - ~ (resp.F . ~ ~

Then for H
1, f12 ~ .~ (kr’) onehas

~*H~*H2}=[V~*HflJd~*JJ,

= [~*7J~ ~

4E’I ~ drr*H
2. E’ C

becauseiT is ad-invariant. The restriction of E to ~r~’ hasno influence, because

~0 H1 takes values in n (P) wlule ir
4H

2 factors through k~P+ mod ker ~ This

implies that

]iT*JJ~ 7I~~H,
1ct= iT*([VH E’IJdH

2)

=

To prove the proposition for any form (...)~ one remarksthat this only shifts

the vectorspaces orthogonal to n and k, which has no influnece on the proof. •

There clearly exist other decompositionswhich give rise to inverselimit Poisson

spaces.Some exampleswill begiven in the third paragraph.But thecasedescribed

above will be the main situation dealt with in this paper. If ii is chosenin this
way there exists an infinite dimensionalLie group with Lie algebran [2] [3].

On the space k’ the coordinates77 = ~ 2 ) will be used. For

eachp e IN. onehasthenaturalembedding:

I : k’~~2’.

given by ~, = ~,, — = iT = ni_ , This identification is the

natural one if one keepsin mind the inverselimit structureof k~.We will usually

not mention this identification, but remark that the flows written as in the

K.A.S. theoremarewell definedon k
1.

Let W be a submanifold of gJ invariant for coad (ii). andV the gradient ope-

rator with respectto (‘ -

1,2. PROPOSITION. Let H
1, “2 e .c?(W), W C k i”, for somep. and
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Dt~[pkVHi,77I, Ds~[p~VH
2,77I on WCk’~.

Then on W, onehas:

(I) DtpkVH2—D,pkVHi + [pkVH2,pkVHtI = 0

(2) Dt(
3xpkVIi

2, 77),,, =DS(öxpkVHl, 77),,,, with thepartial deriva-
tivewith respectto A in 2’ and m E ZZ arbitrary.

REMARK. (1) In this propostion p~VH/stands for j*pkVHj, which is well

definedon eachk” andhenceonk’.

(2) The relations (2) are defined for each bilinear ad-invariant form on .2’.

This form doesnot evenhaveto be of maximalrank.

(3) If 3 is an inner derivation, then with 3 = ad e., e1 E 2, one has for the

terms in (2)

~
3Pk VH

1, ii),,, = ([ei, ~k 7H1], ~

= (e1, [pkVHt, 7711m’

giving trivial relationscoming from the componentsof andD,.

(4) The derivation with respectto A, namely 3/,~on 2’ is not an innerderivation.

This is easily verified. Hence the derivation 3~,producesrelations for (2)

which do not necessarilycome from the componentsof D, andD7. The term

(
35p~V~j,i~),,, is related to the central extensionsof the algebra 2 [18].

Proof Equation(1) is a direct consequenceof theK.A.S. theoremand{H
1, H2 } =

= 0: The equationis obtainedwith theexplicit useof the Poissonoperator.

From (1) oneobtains by derivation

D(
3

5p~VH2—D,
3~p~VH

1+

+ [
3XPkVH

2,PkVHII+ [p~VH1,
3x~k~”21=

Commutation of D~(resp. D,) with as derivations, on elements of the form

pkVH, follows from the fact that the vector fields as sections of T2’ act as deriva-
tions on ~(2’) and hence on P~VHas elements of a module, while is an

operation on the fibre of the module. Taking the (‘ , -),~ product with 77 Ek,

onhas

(D,8SPkVH
2, 77),,,—(DS

3xpkViii, ~7)fl1 + ([3xpkVH
2, PkVHt], 77),,, +

+ ([pkVii2, 3xPkVuhi]~i~),,,= 0.

One also has
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(D(a~p~VH
2.ri),,, = D~(a5p,,,VIi.,,77),,, -- (35p~Vii,. D177,,,

and

(D5d~pkVHi, n),,, = D,(
3+~tWI

1- 77),,, ~ ~ 1)5~!),,,

Using theexpressionsD~77= [pkVHi, 77] and1)577 = [pRVH,, 77] andthead-invarian-

ceof the form (‘ , ‘),,,, one obtains the desired relations.

In the remainder of this paper we shall mainly be interested in the completely

integrablePoissonstructuresobtainedfrom .~ (W).

2. COMPLETELY INTEGRABLE SYSTEMS ON A JET BUNDLE

In order to write the Hamiltonian vector fields, on k~.over a jet bundle one

needs a map a from the jetbundle into k’ which allows one to pull back the

vector fields into evolution equations or more generally into P.D.E.’s. This map

0, which we will call a momentumoperator,has to respectthegradedstructure

of !e. Hence a niust havea recurrencepropertyand moreoverthe Flaniltonian
vector fields in k±have to be tangent to a. Such a map will obviously not exist

for each completely integrable system, but a large class seem to satisfy this

condition. Onehasein mind the KdV-system wheretlte conservationlaws reflect

the inverselimit structureof a k~.

In this paragraphwe will give a formulation for systemsin onevariable. In the

fourth paragraph we will see how this formulation generahisesto more variables

andan example in three variables is presented.

All Poisson structuresconsideredare purely local. Having the variable x on the

line or on the circle is merely the choiceof an appropriatefunction spacewhuchi

takesplaceon the level of the integrationof a Cauchyproblem.

Let J be a jet bundle, which is the spaceof the jets of germs of elementsin

= C~(IR,JRt~I), The dimension in will be chosen large enough so that all

operations are possible without the introduction of supplementaryP.D.E.~s.

In each concrete case this can be made very precise as will be seen. The variable

on JR will be x.
All P.D.E.’s will be supposedto be locally C~-integrableand will always be

identified with their prolongedsubmanifoldsin J.

2.1. DEFINITION. Letu :J—i-k’beamapsuch that

(1) ~{C’],iEIN all P.D.E.’ssuchthat

(a) C’~C’~
1,Vi
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(b) a : C’ —*k’ is a smooth map with values in a finite-dimensional trun-

catedsubspace,and iT o = oj~,, Vj.

(2) Vr, VB. E 3~(klT) the vector fields pk,[pnVHj, ~]I,,are tangent too.

Then c~ is a momentum operator defining a differential operator

ö~:

2.2.DEFINITION. Let a be a momentum operator and S C J a P.D.E.; then

o is holonomic if for each r 3H0 e .~(kJ.r)such that on S

D~a k’~I~V0~U]•

The equations S will be called the constraint equation and the C~,the trunca-

ting equations. One remarks that from the definition it follows that the set

{C~}definesinvariant submanifoldsof ‘~‘ for the system defined by &. The same
is true for theequationS.

The set {C’ } defineson J an inverse sequence structure reflecting the structure

of k’, while S restrictsthe set t6 such that all elements in S are mapped into the
integral curves of the Hamiltonian vectorfield Pk [p~VH0, 17].

This implies that the parameter t0 along the integral curves of this field coincid-

es with thevariablex.

REMARKS. (a) For pratical reasonswe will choosea trace form of rank two for
the function H0.

(b) IfH0=(~,~)~,~E2’Ponehas

V7H0=V0(~, ~r+Q’

where V, (resp. V0) is the gradient with respect to (~, ~ (resp. (. ,

This allows us to choose F , ~ to define the orthogonals and the gradient
on .22 for the rest of this approach.

To facilitate the discussion we impose some conditions on the decompositions

we consider.

Condition (C). Let ~ = n fl and = n fl 2_h/2’2; then n satisfies
condition (C) if

(1) n n2’2=2’_2

(2) ~ti�r 2’~

(3) ~

Now for a fixed p let the Hamiltonian function H0 be (E, flp—i on .2”’. Using



l~ i’!.

the coordinates(i~, 77 ) andthenotation u~77 = o onehas

apkVIJopk(a
2x+0 ~

We remark that the projection p~,is a projection in the fibre of the I~-vector-

bundleoverk~.

Now let ‘I’ : J —* k be a smooth map with values in k n i’~ md let o .1 —~

hea smoothmap,solution of the equation

(i) D5a=[’P,u].

Then the equation S : a*ptVHo = ‘-I’ is a P.D.E. such that for each integrable

local sectionJf in S. f C ~ - the map a o Jf is an integral curveof thevectorfield

[pkVHo, 77] on k’.

2.3. THEOREM. Let ‘1’, a andH. C ,ut(k P) for sonicp. he as ahore

(1) Thefollowing P.D.E. ‘s are equivalenton S

(a) D,’I’ ~~~Dxa*pkVJ~Jj+ [511,O
4PAIf] = 0

(b) I)5a = [a*pkVHj, a]

(2) The equations

(c) D
1(35‘P. a),,, = D~(35a ~ a),,,

are identically satisfied on (a).

Proof The equationsD~u= [‘P. ci] are satisfied identically on S. Hence from

prop. (1-2) it follows that the set (b) imply the equations(a). Moreover on S

one has pk(a,X~ + a~+ a0X) = ~. Because multiplication by A is ad-invariant.

the set (a) is a subset of (b). Now the proof of part (1) follows from the con-

struction of a, which will be given in paragraphthree;namely each
0k depends

algebraicallyon ‘1-’ and a finite number of D~derivatives of ‘I’. Becauseall 1),

commute with D~ on (a) all other equations in (b) are prolongations of (a).

This provespart (1).

Part (2) follows from proposition(1-2) andpart(1).

REMARK. (I) The theoremhas a generalisationfor non holononiic momentum

operators.For the proof of this onehas to rely more heavily upon the con-

struction of a.

(2) The equations(c), for a fixed i. are elementsof the total cohomology of
equations(a). It is sufficient to write

0,,, (3~51’,a),,,dx + (3~u~VH~,a)dt
1.
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Then on (a) onehas dHO,,, = 0, wheredH is the total de Rham operator on

equation(a) [5].

(3) If 3~~ is constant it follows from the previous theorem that system (a) has

a subsetof equations which are conservation law type equations.

The resulting equationsin (a) dependon the choiceof ‘P. To makesurethat

this construction does not imply supplementary equations besides (a) we

need some more criteria avoiding this.

(4) One verifies that 3~may be replaced by any derivation commuting with D~

and the D~,for example D~or any D~.See for examplealso [19]. More

specifically any symmetry vector field of equations(a) will do.

2.4. DEFINITION. A set of functions { Ø~}, i = 1, . . . , Q, on a jet bundle, is func-

tionalli’ totally independent(F. T.I). if each is functionally independentofall

other ~ togetherwith their total derivativesup to any order.

2.5. DEFINITION. A mapf :J -÷ N, with N an affine space,is smooth free map if

(1) f is smooth

(2) f is vertical on J. (f is independent of the base coordinate x)

(3) Im (f) is an affine subspace Wof N

(4) the components off with respect to any base in Ware ElI.

2.6. THEOREM. Let ‘P :J —÷k0 2” be a smooth free map; then the P.D.E. ‘s

of (la) in theorem (2.3) are independent, i.e. the equationsdo not imply any

supplementaryP.D.E. ‘s on S C J.

Theproof of this theoremis straightforward.

Let a be a momentum operator, holonomic on S, one then easily derives the

following proposition.

2.7. PROPOSITION. Let g be a real split semisimnple algebra. Then a set of neces-

sar)’ conditions for a to be a momentumoperator is given by

Q1(u)= constant, i = 1,...,

where Q are the ad-invariant forms on 2’ constructedfrom the Q~on g (rank

g=2). :
Consequently one finds that any a, solution of .D~a= [‘P, a], on S : ‘P =

= a p~7H0,dependson the ad-invariantforms in a parametricway. In other

terms: a given a selectsa specific orbit of the coad (n)-action on W. A different
choiceof theseparametersdefinesa different inversesequencestructure{c’} onS.
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The selectionof thosea’s which define thesameD,u = Ia *ptVlf, a]. for a given

H,., determinesdifferent stratificationsof solutions of this equation. For the sub-

sequent we will assume that g is a real split semisimplealgebra,unless stated

otherwise.

One of the main problems in completely integrable systems is the problem of

reduction. Reductions of the equations appear in this approach on three levels.

namely by taking a different decomposition, by selecting different coad (ii)-

-invariant subspaces W in k’ and by taking transformations of the momentum
operator and thus changing the constraint equation S. We will give a short intro-

duction to these three possibilities.

(i) The selection of coad (11)-invariant subspaces 14” in k’. The map a has to

take values in W and hence by selecting 14’ one imposes conditions OIi a as well

as on W.

From Prop. (2.7) we obtain the conditions ~ 77~)= constant anti ~~o- ~ =

= constant, defining coad (n)-invariant subspaces of k’ which will be used fre-

quently in the examples.

The following proposition allows one to select further submanifoldsin k~.

The proof follows from the action p1 [p,,VH,-77] on F.

2.8. PROPOSITION.Let V be a vectorsubspaceof/c’, which is givenb~’F(ri0) = 0

with F a linear function. Then V is a coad (11)-invariant subspaceof k’ iff

Im ad e0(V) = V.

If we restrict attention to the case dim V = I we distinguish two subcases.

casea : V is a regularsemisimple subspaceof g.

case : 1’ is the I-dimensional root subspaceg g according to a root space

decompositionof g and~3beingthehithest root.

Both areciarly already reductionof thegeneralcase(~,77~)= constant.

2.9. PROPOSITION. Let V be as in the a-case. Then has to be constantand

Proof The Killing form is positive definite on the Cartan subalgebracontaining

From this it follows that is constant.From proposition (2.8) one finds
that has to be a subalgebraof this Cartan subalgebra.But there doesnot

existsa decompositionof .2”~into this ~ and a complementarysubalgebra. •

2.10. PROPOSITION. Let V be as in tile a-case. Then cf0hasto bea subalgebraof

the Borel subalgebra of g constructed upon the negativeroot spaces and is

constant iff ~ is in the centraliserofg ,
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The prooffollows directly from proposition(2.8).

Similar argumentscanbeusedfor further reduction.

(ii) The selectionof different decompositions.

Let 2’ = n
1 e~k1 = ?12 ~ek2 be two decompositionsboth satisfying condition

(C) and let ~ ~1z2; one hasthat kt C k~.This allows one to considera subma-

nifold W C k~which is coad(n1) as well as coad(n2) invariant. The actionscan

be comparedwhichallows oneto definea reductionof a givensystem.

2.11. PROPOSITION. Let n~and n2 define two decompositions of 2 defined as

aboveand let n2 = n1 + in, with n1 0 .2’ = 712 17 2_ = 2. Thesystemdefined

by n and a momentumoperator a is a reduction of thesystemdefinedby n2 if

o ad(in) (k’ 1) = 0.

REMARK. If in is an ideal in g, in case g is a moregeneralLie algebra,onehas

p~o ad (in) = 0 and the condition is satisfied trivially.

To prove this proposition it suffices to write down the flow equations explici-

tly.

(iii) Transformations of the momentum operator.

Let ci :J -~ ~ be a holonomic momentumoperator and G a transformation

groupacting on k’ by conjugationy H—* g ‘y ‘g ~. If v : J —* G is a smoothmap

andg C G we denotev *g by *g Any momentumoperatortransformsunderthis

action as a —* = *g . a ‘ *gl while an evolution equation for a becomes

= [D~~- *g_t, &] + *g - D~a-

2.12. PROPOSITION. Let ‘P :J-+k
t be a smooth map and let a :J~k’ be an

hiolonomic momentumoperator on S : a*pkVHO = ‘P. Then 6 = *ga*gt is an
holonomic momentum operator oii S : 4g - a *pkVJ~JO - *g t + D,, *g . *g t =
= - ~1- *g 1, for aip’ map v : J ~.- G.

REMARK. (1) Any G leaving k’ invariant has to be a group with Lie algebra

]~ A1 ~ in g ~. In generalone chooseselementsof the group with Lie

algebra 2’0, andmore generallythoseelementsleaving ‘P invariant.

(2) Neither the space kt nor tl1e spacen has to be invariant under G.

(3) This proposition also allows one to enlarge a given system of evolution
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equationsby choosingv on a larger jet bundle.

Proof It is sufficient to observe that tangencyof the tiows is conservedunder

this type of transformation. The truncating equationstransform accordingly

while the constraintequationtransformsasgiven in thepropostion.

2.13. PROPOSITION. Let ‘P : J -+ k’ be definedas before anti let K he 1/Ic sub-

group of G ( 2’s) leaving a5 ‘P invariant. Themi it follows from the ad-invariance

of the forms (...),,, that the conservation laws (2.3(c)) arc ini’arian t under K.

If in addition ö5 ‘P is constantthen the conservationlaws are a subsetot the

Backlund equations.Hence one may look for a reduction to select theconserva-

tion laws out of the Backlund equations.We will show that thus is not always

possible in the examples.In the case one obtains in this way thesystemsgiven

by V.G. Drinfeld and V.V. Sokolov [7].

As a final remark one seesthat if v is taken constantone is able to construct

parameterfamilies of complete integrablesystems.We will show as an example

how the I-parameterfamily given by B. Kuperschmidtrelating MKdV anti KdV

is obtainedin this way. This situation is very interestingbecausethie integration

of the flows on the Lie algebrais thesamefor all membersof thie lamily.

3. CONSTRUCTIONOF MOMENTUM OPERATORS

The construction of a momentum operatoris central for the construction of

completely integrabiesystemsas well as for the understandingof their structure.

This paragraphis basedupon two basic constructionsfor a simple Lie algebra.

Both constructions are then easily adaptedto other decompositions.This will

be shown for some particular casesarising from the decomposition appearing

in [2].

Let g be a simple Lie algebraof rank ~ and I a root system for g. o~is the

set of simple roots, ~ the highest root and Ii the Cartansubalgebra.With respect

to the correspondingrootspacedecompositionof g, b will be the Borel suhalgebra

constructedon thenegativerootsuhspacc.Thie naturalgradinggiven by theheights

of the roots will be indicated by meansof the parameterp. Then for ~ C g one

has ~= ~ We recall that thereexist t traceforms . which generatethe

ad-invariantpolynomialson g.

The two next lemmasareformulatedon theKac-Moody-Lic algebraconstruct-
ed from g. The first lemmais dueto G. Wilson. It will he presentedwithout Proof.

Becausewe are interestedin holonornic momentumoperatorswe want to hiave

a very partical solution of thegivenequations.This is the reasonwhy the lemmas
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are presented in this specificform.

3.1. LEMMA. (G.Wilson [22]). Let ‘P = ~+ ~ with ~ :J-÷g, smooth

maps,J any jet bundle, ~ constantand regular in h and ~Li~with values in ht.

Then there exists a a : J —~20 uniquely defined by the set of constants
{E11 i = 1 ~j = I oo}and the requirements

(a) a0=mJi1

(b) Q~(a) >2E.1?C’, wjthE.0= Q.(~i1)

(c) D~a= [‘P, a].

REMARK. Using the fact that any a : J -~20 solving (c) has to have its highest

elementin h, it is easy to select the solution given in this lemma from the set of

solutions given by G. Wilson. As it is indicatedby G. Wilson onecan generalise

this lemma to those ‘P with ‘,1i1 constant in any Cartan subalgebra of g.

3.2. LEMMA. Let ‘P = + XV~,with ~ :J-÷g, smooth maps, J any jet-

bundle, ~ constant in g~and = B + ~ exp ~ - e,, - B takes values in b. If
rank g = 2 one requires that ~ = 1. Then there exists a unique solution
a : J 20, defined by the set of constants{ E~1 i = 1 Q; / = 1 oo}

and therequirement

(a) a0=i,1i1

(b) Q1(a) ~
/=o I

(c) D~a=.[‘P, a].

This lemma will be proven by nieans of the following statements, which consti-

tuite the construction of the solution. One observes that the set of solutions is

a linear space. Hence it is sufficient to prove the existence for ~ 0 and = 0,

j~2.

STATEMENT 1. Each equation

DE= ~ ~a’

with ~ eg and a the grading index of g, containsonly E-terms of height ~a — 1.

Moreover each element of height a — 1 is multiplied by a non negative element

(of height 1) in

STATEMENT2. There exists a partition B, containing ~ classes, of the set of root

subspaces and base spaces of h (with respect to P), such that each class of B is
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an ordered set. Moreover the partition B itself is an ordered set, tile ordering

beinggiven by theheight of the largestelementof each class.

Let a = 1 2 he the class index, whiehi is taken in agreementwith this

ordering: the coordinates of the highest (resp. lowest) elements of the classes

are denoted by (~~)(resp. (~°)).

STATEMENT3. The set of equations

(1) ~ [~EJ

is equivalentto

(2) ~ipi(±~u)

and the 2 remaining equations

(3) D~(~ = ([h, ~])°~

The P’ are differential operatorsin D~,with coefficients in .~(J).Substitution

of (2) in (3) givesthe recursion relations on the set(+ ~

STATEMENT4. The equations D~Q1(E) = 0. i = I 2. are necessarycondi-

tions for the equations (I).

STATEMENT5. Consider the equations

(4) D=(~0+X~1,E], ~E2’
0.

(a) The equations(4) reduceto

(5) ElpI(+~a)

and the 2 recursion relations

(6) R(~~)= 0.

(b) For all E’ of positive and zero height, the corresponding operators P’ are

independentof A.

(c) For all ~ of negativeheight, the correspondingoperatorsP~are hnearin X.

(d) The image of the linear part in A of each operatorP,~,of h1eight — a, is a

polynomial over .~(J). which is linear in the variables D~+~ 0 ~ r <a.

d — a + r — I -K m,, d — I, where d is the Coxeternumber and ni, the

exponent correspondig with the ordered class a

(e) Substitution in XQ~(~)= constant and Q
1(~)= 0, i ~ 2, of (5) together with
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E’=~A1A’, A0*0

givestheuniquesolution a : J —÷20 of lemma (3.2).

The proofs of the statements 1 to 4 are straightforward while the proof of

statement5 (specially (e)) requiresan explicit useof the ad-invarianttraceforms

for the different simple Lie algebras.

Both lemmas will be used to construct holonomic momentum operators for

some specific decompositions.

According to the work of M. Adler and P. Van Moerbeke we distinguishtwo

basic types of decompositions.

(1) The spinning top types

Here 2 = n n k satisfies condition (C) and k n 2~= 2~.

Such decompositions contain the decompositions considered by W. Symes,

determined by parabolic subalgebras of g [20].

(2) The Toda types

Consider the algebra 2” which is obtained from 2by the condition ~ =

where d is the Coxeter number of g. Let r be the Cartan conjugation given

by

r:2’—i.2’

(~pî) _4

Let n = 2 n ~ with = b, anddefine

k={~E2’I~=—r(~)}.

Thisdecompositionsatisfiescondition(C).

Both types of decomposition are discussed shortly and it will be shown how

the two lemmas are applied.

1. The spinning top types (with ii = 2_)

(a) 7747 ~Sconstant.

cr-case: 770=e~.
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Becausei = i ~o ~ withi ~ the componentin ~ t; 1, of p~\/II.tbr ~tii

H C .~(k’), one finds that ~ C Inlath (i~~). This implies that It defined H

- ‘-: -y + ~2~ , whlerc ~yarc the coordinateson the Borelsuhaigebra
is coad(ii )-invarianI.

The commuting flows determinedby tile quadratic forms in .~‘) it’) are deter-

mined by thegradients:

= I + ~r+i + . . . + ~

Let ‘P be as in lemma (32) and a : J ~71 a solution of theequationD1a =

= [‘P, a]. The constraintequationusingH0 becomes

S : a m =

The following propertiesare easily verified.

3.3 . PROPERTIES. (I) EquationS implies that = 0. Vj (tIle ~ determinedas in

lemma3.2).

(2) The componentsof the equation a = which lie iml theCartansubaigebra

areidentities.

(3) If ‘4’ is a smoothfreemap andif B is of maxinlal rank. tilen any a as in lemma

(3.2) is a momentumoperatorwhich is holonomicon S.

One observesthat tile decomposition in invariant under thie adjoint action of

G( 2~).Moreover the subgroup generated by the nilpotent subalgebrain b

leavesthemanifoldQ invariant.The constraint equationsbecome

~0+D~g-g ~u

Using tile reduction procedure as defined aboveoneobtains a representationof

2 equations. Any transformation from one represeiltation to aIlother one is

given by a Miura-type transformation (see V. Drinfeld, V. Sokolov). Bearing

in mind that the conservation laws are invariant under this type of transfor-

nlatioil, this setdoescontain the conservationlaws.

Further reductionsof tilese systemsare obtained from a deconlposition with

� 0, such that ~ ~ ~] = 0, or by ~ 2’ 1~7~2 or by time useof tran-
sforri~ations in G( .2’ ).

13-case

= /7. witll hi,~ regular in Ii.
in tllis caseone finds that C Imad ). This allows us to define 11’ by Ii

and)X. 7] ~) = 0, VXCh.

File folhowing propertiesare easily verified.
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3.4.PROPERTIES. Let ‘P and a be as in lemma (3.1) and let

S : a_
1 =

Then

(1) S is satisfied identically

(2) if ‘P is a smooth free map and if with values in Im (ad h) is of maximal

rank, then any a as in lemma (3.1) is a holonomic momentum operator.

The subgroup of G(2’0) leaving h~ invariant is the 2-dimensional abelian

subgroup generated by Ii. But the situation is less rich than in the former case.

As a consequemice of proposition (2.9) no reductions by choosing c~~ 0 are

possible.

(b) 77~is non constant.

Following proposition (2.9) one is only left with case ~3.

Let = ~ This implies that C b with fl h * 0.

Lemma (3.2) generahises to this case and with ‘P a free smooth map satisfying

the rank conditions one finds a to be a momentumoperator which is holonomic

on S :a~=

Reductions of these systems are constructed in a similar fashion to the above.

2. The Toda types

Let 2’ = n k be a Toda type decomposition; then k’ are the symmetric

elements in 2”.

The a-case is excluded as follows from proposition (2.9).

Let be in the space g,~,then * 0 for some Hamiltonian flow. Lemma

(3.2) generalises to the following case:

Let ‘P = — At ~ + ~— ~ + A with = e~e ~ and ~ = ~ exp ~ - e~.Then,

together with similar conditions as in (3.2), there exists a solution a of the equa-

tion D~a= [‘P,a], a :J ~÷2’0, whit a0 = ~ Ifin addition the set{f, 01}is a free

set of maximal rank amid if rank g> 2, then a is a momentum operator. If the

Lie algebra g is an A1 algebra, then the condition (i,Li~.i,L~)= constant implies

that 0 = —f. Any non constant function fdefinesa momentumoperator.

REMARKSAND GENERALISATIONS. (1) The above cases show already how the

two lemmas have to be generalised to cover other types of decompositions.

More specific choices for ‘P as for example ‘P = ~ i,L~A’ are possible as
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long as tile higllest termsremaimi as in tile lemnlasamId the aredetermined

on a givendecompositiomlii k.

Also more terms in the positive powers arc possible. If ii = 2/° one sets

‘P = A - ~‘1~ Tile Backlund equations themselvesnow becomes flows of a

coadjointaction.

(2) In order to describesystenisin more variables,the aboveconstructionsmay

be generalizedin the following way.

Let g = g
1a’. with a’

4 = 0, 1 or—- I. andg anysimple (real) Lie algebra.

One themi constructstheKac-Moody-Lie algebraoverg. Theequationdefining

tite momentumoperatoris now givemi by

La = [‘P. ci]

with

p

L = \ a’D
~ xl

1=0

and ‘P : J ~ k J is now a jetbundleof elementsin C~’(fl~,IRm). Tile choice

of ‘I’ has to be in agreenientwith sonic generalisedforniulation of the he-

mas.Exampleswill begiven in thenext paragraph.

More exotic operators (including projection operators) can be takemi for L.

The maui poiIit being that the variables (x’) have to intertwine with the Lie

algebrastructure.

(3) The reductionsobtainedfrom G(.Y ) arestudied by V. Drinfeid - V. Sokolov

[7]. They also give themain lemmato dealwith thesereductions.

(4) G. Wilson [22] showedthat thereexists a transformation in the Lie algebra

2’ relating a special reduction of case a with a special reductionof case13.
This class comitairm the systemsdescribedby B. Kupersciimidt amid C. Wilson

[14] [15] using the cyclic elements in g2(n. C), the TD-systerns described by

G. Wilson [22] amid the systemsdescribedby V. Drinfel’d and V. Sokoiov

[7]. We recall that the classof Toda-typesystemswe considerdo not contain

the 2 TD-sytemsdefinedby G. Wilson.

4. EXAMPLES

(a) Examples on sl(2, IR).

Let (e
1, e2.e3) be a basefor sl(2, IR) suchthat [e1.c’7] = e1. {e1. e4] = 2c2.
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[e2,e3] =e3. The coordinateson J are ~ . . .) and
themap ‘P is definedby ‘P = (ue1 + ye2—e3) + Ae1.

The solution of D~a= [‘P,a], as given by lemma (3.2) is defined as follows.

Let l~~=~ A .A’;then onehas
i= 1 ‘

— (D~—D~~u—
2u)Ak—Ak_i

= (Dr— V)Ak.

The remainingequationis

(D~+ uD~— D~v — 2D~u— 2uD~— uD~v) ~ = 4ADX ~,

which is solvedby meansof the Killing form:

4X~3~3+ (4u + 2v~+ v2)~3~3+ DE3D~3—2~3D2~3=4)C’+ E_
2X

2 +

where the E..~,sare constantsfixing the orbit. Substitutionof ~ withA_
1 =

= 1 yields

A2= —[&2—4u--2u~—u
2]

A
3= —E3+ — [D~—E2+6A2JA2

Thisdefinesa completely.The C’ are given by A1 = 0.

Example (1)

n=2’, k=2’0n2~, k’=2’~, W={77EkhIfl0=_ei,(fl0,?i_j)=rl}.

The elementsin d (W) for a givenp E ~ and W C k’~ are generatedby:

~

~ .-

H~3 = 2(E~~E~~+2~+
2~p-i’ ~-p+ 3) + - - - + 2(~2,~
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It is easily lound that tile flows of II ~ 2 are trivial on II’. while

tile other flows at eacil point p C )4! span the tangemit spaceof a Lagramigman

manifold of the orbit througil p of the eoadjoint action of Gn). hI the inversd-

limit structrmrctile Hamiltonian vectorfieldsare definedby thegradients:

= + ~? ~, + ... +

According to theorem (2.3) amiy flow

D~u = a pkVH a]

is determinedby D~~- The Bdcklund equation gives

Ut =(D—v)A
11

= 2A -

The constraint equation becomes

S:0=t +—(E —4u--v
2).x -,

The first non trivial flow is

= — —(v~.~—3VV - E
2v~)+ — F

The systemsare completely integrabie for each term in the inverselimit. This

is checkedby defining thedimensionof on (b.c in eachspace~

Example(2)

Let 13 C IR and define the I-parameterfamily of decompositionsby

ii = 4- hRe~

k = IR(e3—13e2+ 13
2,/

4e1)~- IR(e2—13/2c1)‘7.

= IR(e3— 13e2 + 13
2/

4e~) ~

whicll is defined by a null rotation in F
1- 2 sl(2, IR). Projectiomi upon /~is

defined by

Pk(ael + be
7+ cc3) = (b + c13)(e7—13/7e1)+ c(e4—13e7+ 132 ,/4 C]).

The Hamiltonians H ~ H 2 are trivial on W C /~ ~‘ and time constraint

equationis

S a = 13/2m + 132/4
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The flows are, forE, = 0. i ~ 2.

v,. =D(D—v+j3)A_~,

whichgivesfor i = 2

Ut =— ~(~~—~ U~V~+31lVV~— f32~)

This is the 1-parameter family due to B. Kupershmidt [12].

Example (3)

Consider the decomposition n = 2’ n IR e
1 e lR e2 and k = e IR e3.

It is sufficient to use

‘P = e-~e3+ Xe~e1

as is easily seen from the form of k.

This gives from a = [‘P,a]

— ~

2 = — e-‘~D~~

Constancy of the Killing form gives, with E. = 0, i ~‘ 2.

A1 = e~

A2= ~

etc.

and ~ ~ A.A’.

The flows are given by D~ef= D~A1.The first nontrivial equation is

f = - — (2fm -f~f~f~)-

One remarks that the constraint equation S is trivially satisfied.

Example (4)

Considern=2’
24-(1Re

2nIRe1)A~Et-lR’e1.

k=lRe3A~
tn(IRe

3nlRe2)n-
2’~.
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Tile suhnianifold W is definedby ~ = e~. = I. It is sufficient to write

‘P=we
3-X ‘+(e3+ue2)+emX.

The equation ~ = [‘P, ~] hasa solution with

l[a.

2a a a

~
2=——(Dx—v)~3. a=l+A~w,

a

and

A
1=l,

which definestheequation

S:w= —•v +—v
2.

2x 4

The first nontrivial evolution equation is

V = — — (v~~+ V~V~—V2U).

ExampletS)

Using lemma(3.1) and

‘P=Uem+we
3+X~ae7 (a=lori)

Then with a = 2/ and k = one finds if

(i) a = I and using the reduction u = w: the MKdV-equation. or if one sets

= 1: theKdV-equation

(ii) a = i andusing u = ~2i:thenonlinearSchrOdingerequation.

In all these casesthere is no constraint equation.Theseexanipiesare now well

known.

Example(6)

Using theToda type decompositionone needsto consider

‘I’ = e
1e

1 - + e~(et+ e3) + e’e3- A.
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Remarkthat in this basis r(e
1)= — e3. The equation ~ = [‘I’,fl defines

[1 1 1 1
~_1=I —D~—D~+—(ef+Aef) l~

L2a a a j

~
2D~3 with a=e_f+X_1.ef.

Substitution in Q(~)= —4 yieldswith ~ = ~ A
1 A

1
1=1

A
1 =e~, A2= — Eefe2f_e2f+±(26x+fxfx)j

Then obviously ‘I’ = P~(u1+ Au0) and hence there is no constraint equation.
We set

0 = ~k~—2 + Au1 + A
2 a

0),

then theBäcklundequationD1~ — D~0 + [“I’,O] = 0 yields

— ~ [~e~ + e
2f)f~+ — (2f~~~+fxfxfx)j.

Example (7)

Let n = 20, k = and set

‘I’ = A(ue~+ ye
2+we3),

with —4ua’ + V
2 = — 1.

The equation ~ = [‘P,~] has a solution given by

l[ 1 1
~‘= —ID~-—-----(D~—Xv)+2Xuft3

2A0L Aw J

(D~—Au)~3,w�0,
Aw

= ~ ~ A
0= w, A1=— ~ + ~

The equationsare
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D, a0 =

and tile equmation S is trivial. Tile first non-trivial equmationis

f = -~- + a) +

V = (— U - a1 +j~.(u
2 I ))~

with w =

One finds that the flows do not span a Lagrangiansubnianifold of an orbit

in k ~ Completely integrahility follows from a more detailed analysisof

the inverse limit structure.

(h) Exampleson gradedLie algebrasovers1(2. IR).

Example (1)

Considerthe Lie algebrag =g
1 + a g7. with a

2 = 0 andg~~g
2 ~sl (2. IF.).

Let ‘P = (act + ye,— e3) + a(fe1 + ge7)+ Xe1, then one verifies that the

equation (D~+ aD~)~= [~, ~] hasa solution a : J —~2/~ suich that 0(7 C. Let

K he theKilling formsi on s 1(2, IR): tileli

K0 OK
and K=00 - EQ

are ad-invariant forms on g. These forms allows one to solve the recumrrence

equations. If one chooses the deconiposition ii = 2/ - k = ~ + ~ the eqmma-

tiomi S is

I I
it = — V.— —

2~ 4

1 1 1
f=—— vg+ —g~+—-v~,

-) 1 1

and the first non trivial equationis

v=——v +—u a4 .l)~X -~ X X

3
= - ~ V 1--v~(g~+ VV).

Remark that a 2 = yields nothing micw because then tile Lie algebradecomposes

intog~+g7andg1--g7.
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Example (2)

Considerg ~ -+-ag2+a
2g

3witha
3 = 1 andg

1~g2~g3.�sl(2, IR). —

Let ~ =(u,v,—l)~ +a(f,g,0)
T +a2(p,q,0)~+X(1,0,0)T and let ~=

= ~ + ar~+ a2p be coordinates on 2’. The equation (D~+ aD~+ a2D~)f=
= [i,L, ~] has a solution a : J ~ 2/0 which is found using the ad-invariant forms

OKO 00K K00

K
1= K 0 0 ,K2= 0 K 0 ,K3= 0 0 K.

00K K00 OKO

Let = e1 + ae1 + a
2e

1and the 1-parameter family

e1 =

e2 = e2 — —

‘3

e3—e313e2+~/4e1, ~

Wedefine the splitting

n=2’_nIR’è1, k=2’~eR~2eIR~3,

which yields theconstraintequations

1 1
u = _~2.... j3v

4 2

S:f=——~~g
2

p = — — - q.
2

The flows aregiven by

= ~(A1) + P2(B1) + P3(E,.)

= P1(B~)+ P2(E_1) + P3(A~)

4i =f~(E_,)+P2(A1) --P3(B1)

with
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~ A_
1A’, ~~=~B.X-’, p~=~ E1X ‘. and A

— v_fl)v+2(D~~ _~)q+2(L~+~q)g]ll~2

B2=—— [2(D~+± v_L3)~+2(Dy+_~)v+2(Dz+_q)qj

E2=— -~_[2(D~+..~- v_~)q+2(1~,+±~g)g+2(Dr+±-q)vJ.

The operatorsF, are given by

P1 ~

~

~

Oneobservesthat on the line x = y = z this equation reducesto the 1-parameter

family of example(a —2).

I like to thank P. van Moerbeke,M. Adler and R. Palaisfor the kind hospitality

they offered me at Brandeis University, where a large part of this paper was
worked out.

Addendum. In [24] Flaschka, Newell and Ratiu derive the A.K.N.S. equations from the
Kostant-Adler-Symestheorem on the Kac-Moody Lie algebra2’ constructedfrom s1(2, C) and
using the specific decomposition of 2’ into 2’ — and

2’o ~ 2’~. These are the equations
mentioned in example (5), which have been worked out for more general Lie algebras in [22]
and [14]. If one considers the x.parameter along the integral curve of the Hamiltonian vector
field determined by H

0 = (~,~)p1 on 2’ P, for a given p e }4, as is done is theseexamples,

the constraint equations are trivially satisfied and hence the momentum operator is holonomic
for each orbit. This is no longer true for the other Hamiltonians, which imposesconstraint
equations on the function space if one integrates the finite zone solutions on the Jacobian
associatedwith the orbit [25].

In [24] the aim of the authors is to determine the link betweenthe Kac-Moody structure
with the r.functions (referencesare given in L24]). It is howevernot clear how the results of
[241 generalise the other Lie algebras and other systemsof P,D.E.’s. The Hamiltonian form.
which is worked out in detail in these papers, depends upon the type of decomposition of
2’ and the type of invariant submanifold WC ki one choosesin the inverse limit space. it
seemsthat the introduction of the momentum operator clarifies a lot in the relation between
the flows on theKac-Moody Lie algebra and the ~.ommutingP.D.E.’s. In particular it determines

the connection with the work of Bubrovin [8] a.o. and with the finite zone solutions of some
field equations,as is shownin [25].

In [24] a second Lie algebraic interpretation is given of the same equations in termsof the
translated-invariants theorem of Kostant. The conservation laws are derived in a lessgeneral
form as we dohere and in [25].
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