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Abstract. The introduction of an inverse sequence of Poisson spaces, determined by
a Kac-Moody Lie algebra, allows to define completely integrable systems of P.D.E.’s
described by the coadjoined of an inverse limit group and to extend the inte-
grability techniques of M. Adler and P. van Moerbeke to systems of evolution equa-
tions. The P.D.E.’s appear when the flows are written along the integral curve of a
fixed flow. This is achicved by means of a momentum operator which provides a
geometrical description of the systems.

INTRODUCTION

The main technique which is used by M. Adler and P. van Moerbeke to deter-
mine complete integrability is the description of the equations as the adjoint
action flows on a graded Lie algebra, which is embedded in a Kac-Moody-Lie
algebra. The integration is then obtained by the linearisation of the flows on the
Jacobi variety of an algebraic curve. Completely integrable systems consisting of
non linear evolution equations (of the KdV-type) have been studied by a growing
list of people, see for example [1] [7] (9] [12][14][15] [16] [19] [22] [23]). The
equations are written either in Lax form or in Zakharov-Shabat form; we wil
call the latter Biacklund equations.

The main purpose of this paper is to show that one is able to extend the
approach of M. Adler and P. van Moerbeke [2] to the latter systems.

This will be done in two steps. First one remarks that the introduction of an
inverse sequence of Poisson spaces allows one to extend the finite dimensional
systems of [2] into infinite dimensional ones. Next a jet bundle of C™ -functions,
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or a subset of it. is considered as the arca on which the evolution equations are
described as special vector fields. A map defined on this space with values in the
inverse sequence of Poisson spaces pulls back commuting flows. defining a com-
muting system of partial differential cquations. This map will be called a mo-
mentum operator.

The paper is orgunized as follows. We study first the inverse sequence of Pols-
son spaces constructed from the Kostant-Adler-Symes theorem applied to a Kac-
-Moody-Lie algebra.

The next paragraph deals then with the definition of a4 momentum operdator
¢ describing P.D.E.’s on a subset S of a given function space % . The only role
of S is to restrict % such that the elements of S are mapped by ¢ into the integral
curves of @ Hamiltonian vector field of the Poisson structures. We will call S the
constraint equation. The inverse sequence structure ol the space li_n) S des

termines by means of the operator ¢ un inverse sequence structure on S ..
cC e ¢l where the ¢ are C”-integrable P.D.E s, It is this inverse
sequence structure which will finally permit to determine the complete intepru-
bility of the equations.

Because any momentum operator ¢ pulls buck the ad-invariant forms from uny
A ’1 into constants. one finds that a given 6 fixed a specific orbit m cach 4 - Hen-
ce the momentum operators, on S, are purametrised by the ad-ivariant forms on

lim 4. For each value of these torms the operator « | o determines a specilic
(v

—

algebraic curve given by Det (G(M)| -~z - kd) = 00 A is the grading parameter of
¢

lim . If on a given ¢ the image of ¢ statisfies the regularity conditions given

e

in [2], one is able to determine a bijection of this image and a subset of the
Jacobian of this curve. In these cases one may construct «finite zone solutions
[8]. We will not pursuc this aspect in this paper.

The different momentum operators, which define a given evolution cquation,
determine different stratifications of solutions for this cquation in the inverse
limit. We also remark that the construction. as it is presented here. is purely Tocal.
Global extensions of the solutions may have obstructions.

The third paragraph then indicates how momentum operators are constructed
in practice. Two basic lemmas are given together with some generalisations. It s
clear that the existence of such operators is at the heart of this approach.

The last paragraph with examples shows the power of this approach in the
construction of such systems. Examples of 1-parameter families of integrable
systems are given as well as systems in more variables.

The problem ot reduction of integrable systems, which i1s a very delicate
question, becomes more transparent in this formulation. It is shown in the second
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paragraph that reductions can be obtained by choosing smaller orbits in the Pois-
son space, by taking different decompositions of the Lie algebra or by means of
adjoint actions on the momentum operator.

The present approach is different from the other approaches in that the Poisson
structure of the infinite dimensional Lie algebra is taken as the fundamental
structure. The approach is very close to the work of Vinogradov and B. Kuper-
shmidt [13] in that the jetbundle is considered as the appropriate space to descri-
be commuting partial differential equations. This is in contrast with the work
of A.G. Reyman and M.A. Semenov-T. Shansky [19], where some specific
function space has to be selected to make the Lie algebra into a dynamical Lie
algebra. The work of V.G. Drinfel’d and V.V. Sokolov {7] relies very heavily upon
this approach. Our approach is in some ways very close to the work of G. Wilson
[22]. One of the main lemmas is due to him. But is has to be remarked that the
flows on the Lie algebra are not considered in the same way, nor is the approach
of I.M. Gel’fand and L.A. Dikii used to describe complete integrability. Indeed
it is the inverse limit space structure which allows one to define the exact number
of equations needed at each grading to define integrability of one the flows in
terms of some initial data.

A short sketch of the evolution of the ideas will help to situate our approach
within the different approaches to this problem.

Initially we are interested in equations which can be written in the form

(H DA—-DB+[A,B]=0

where 4 and B are (n x n)-matrices with coéfficients in the ring of functions
one some jetbundle J. D, and D_ are total derivatives with respect to the coordi-
nates (x, f) on an open subset of IR2 These equations appear in the work of
Wahlquist and Estabrook [21] and are very closely related to the formulation
of a Bicklund problem in the sense of Goursat [10] for a P.D.E. [16], [20], [4].
If a representation p :gl1(n, R) > Z(N) is choosen of g1(n, R) in the Lie algebra
of vector fields on a manifold N, with coordinates (v), one is led to the considera-
tion of the system

) v =(poA) )
(3) v, = (p = B) (V).

Equation (1) is in some sense the compatibility condition for the system (2),
(3). If one is able to eliminate the variables of the fibres of J from this system one
is left with a P.D.E. on (v). The system (2), (3) is then a «Backlundtransforma-
tion» in the sense of Backlund-Bianchi-Clairin. As a consequence of the enormous
interest in evolution equations in contemporary practices one prefers, roughly
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speaking, that equation (2) be a contact transformation. Equation (3) then
becomes after elimination the modificd equation of (1). The classical example
is the KdV-equation written as (1). Equation (2) is then the Miura transforma-
tion and (3) is after elimination the MKdV-equation |6].

The famous Gardner transformation consists in the introduction of a para-
meter in (2), which allows one to invert this equation formally. This then pro-
vides an infinite set of conservation laws and symmetries, which are the basic
ingredients for integration. It is this idea which is at the basis of our approach.
The introduction of a parameter implies that equation (1) is written on a Kac-
-Moody-Lie algebra. The equations (2) and (3) become flows on this algebra. If
one of the flows, for example equation (2), is inverted by analogy with the
Gardner transformation, one obtains a map from a jet bundle into this Lic alge-
bra. This map is a momentum operator which we define in the second paragraph.

Finally we remark that the theorems in the paper are not given in their greatest
generality. This is done in order to keep the paper readable and to facilitate the
insight in the constructions. As is shown in the examples, generalisations are
easily obtained without fundamental alterations of the thcorems and definitions.

Most theorems and propositions arc written for maps in C7(IR™. R?). Also
the Lie algebras are mostly over IR. This restriction is not essential and an exten-
sion to the complex case is obvious.

1. INVERSE SEQUENCES OF POISSON SPACES

The setting of this paragraph is the Kostant-Adler-Symes (K.A.S.) theorem.
which we will rephrase while defining the necessary concepts [2].

Let g be a finite dimensional Lie algebra equipped with a non degenerate ad-
-invariant bilinear form (. ,.) and let g = k % n be a decomposition with & and n
both Lie subalgebras. The subspace k' (resp. #') is the orthogonal subspace to
k (resp. n) with respect to (.,.). Hence k! is identified with the dual of n. By
this identification the subspace k' inherits a Poisson structure given by the
(Kirillov-Kostant) coadjoint action of n. coad (n), on k*. This action is given
by p,lp, V H E] ekl He F(k') and V the gradient defined by (...). p, |
(resp. p,) denotes the projection on k' (resp. 1) defined by the decomposition
k' v nt (resp. k #n).

Let W C k' be a submanifold, invariant under coad (r) and let &/ (W) be the
ring of C~-functios defined on a neighborhood of W, which are invariant under
coad (g). Then & (W) is a system of commuting Hamiltonians on W. Morcover
if H belong to & (W), then the corresponding Hamiltonian vector field is given
by [, p, V H] |w, £ € W and p, the projection on & along #.

One remarks that p, V H is a section of the k-vector bundle over W C K
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This theorem will be applied to decompositions of a Kac-Moody-Lie algebra
which allows us to construct an inverse sequence.
A Kac-Moody-Lie algebra & constructed on g in given by

m
gzb_ £ N|§ € g and m €ZL arbitrary).

and equipped with the bracket [Z £ N, Zn N]=Z [£,n]N*T [2) {11] [18].
i Ji e

The bilinear form (.,.) on g defines an infinite set of ad-invariant forms on
h given by

Em, = Y Gum).
i+j=2¢
Each product (£, 7),, for §,n€ &, consists necessarily of a finite number of
terms and hence is well defined. All ad-invariant polynomials (more specifically
the trace forms) on g extend in the same way to .. If (., .) is the Killing form
on g, then (., .), is the Killing form on £[2].
We define the truncated subspaces £ ? by

p
.gp::Z Ei)‘ilsieg

The subalgebra of pesitive powers (resp. negative powers) in A of £? is denoted
by £? (resp. £P) and the zeroth order part by £%. Similar definitions are
used for &.

Multiplication by X on £ defines an ad-invariant map % —.%, namely
A.ad¢ = adEA. This multiplication allows one to define the following limiting
system

— Pt pp " ppe1 T

where the projection 7 stands for multiplication by A1, The inverse limit
£ = 11_111 £P is obviously different from &.

In applying the K.A.S.-theorem we will mainly be interested in the following
type of decomposition satisfying:

) L=nek, nCc¥ of, nnLP=2L"P forsome peN.

(i) For any ad-invariant bilinear form of maximal rank (., .)Q, the

following inclusion is a strict inclusion:

KPCktPrl with kP =kin ¥P, peNN.
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1.1.PROPOSITION. Ler 1. Hy € -# (k Yy and w o kAP = KNP the projection map.
Then 71*-.’]{1, H, }'U = fﬂ*Hl, ﬂ*}lz}l, where - 'J"O (resp. .- :l) is the Poisson
bracket determined by (- . Vo (resp. by - 0), on the ring of functions on
kAP ker 7).

We denote k! = lim &7,
am

Proof. Let (-, Jo be given and define n'?’, subspace of n. such that the form
(- .)p is non degenerate on n'P @ kP Let kP* and n'P* be their orthogonals and
VO (resp. Vx) the gradient with respect to (- . Jolresp. (o))

Then for H,, H, € # (kP 1) one has

\TEH m¥H b = [V mRH E] jdTr A, fekrt!
= [n*V H. m*E"] _Jdm*H,. £ ekr

because 7 is ad-invariant. The restriction of £ to #*¢’ has no influence, becausc
Vo H, takes values in n‘? while m*H, factors through k'7 +1
implies that

mod ker T This

\TAH, m*H, = (Vo H ) £ _idH,)
=m*{H, H,},.

To prove the proposition for any form (...), one remarks that this only shifts
the vectorspaces orthogonal to # and &, which has no influnece on the proof. =

There clearly exist other decompositions which give rise to inverse limit Poisson
spaces. Some examples will be given in the third paragraph. But the case described
above will be the main situation dealt with in this paper. If 1 is chosen in this
way there exists an infinite dimensional Lic group with Lic algebra n [2] [3].

On the space %' the coordinates n = (770‘ N ) will be used. For
ecach p € IN, one has the natural embedding:

jikP 5

given by Ep =1, épfl =70 ... Ep ;= - This ide_ntiﬁcation is the
natural one if one keeps in mind the inverse limit structure of &'. We will usually
not mention this identification. but remark that the flows written as in the
K.A.S. theorem are well defined on &'

Let W be a submanifold of &' invariant for coad (#). and V the gradient ope-
rator with respect to (- . -)

o

12. PROPOSITION. Let H|, H, & .o/ (W). W C kP, for some p, and
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D,=[p VH .nl, D ,=[pVH,nl on WC kP,

Then on W, one has:
(1 D,pVH,—Dp NH +IpVNH, pVH]1=0

(2) D,,pVH,n), :Ds(akkaHl, n),, With 8, the partial deriva-
tive with respect to X in £ and m € ZZ arbitrary.

REMARK. (1) In this propostion p,VH, stands for j*p VH,, which is well
defined on each k*? and hence on k*.

(2) The relations (2) are defined for each bilinear ad-invariant form on & .
This form does not even have to be of maximal rank.

(3) If 9 is an inner derivation, then with 0 = ad e eieg, one has for the
terms in (2)
(op, VH,m),, = (le;, p, VH ] M),
= (e;. [p, VH,. 7)),

giving trivial relations coming from the components of Ds and D .

(4) The derivation with respect to A, namely 9,, on & is not an inner derivation.
This is easily verified. Hence the derivation a)\ produces relations for (2)
which do not necessarily come from the components oth and D_. The term
(a)\kaH, n)m is related to the central extensions of the algebra & [18)].

Proof. Equation (1) is a direct consequence of the K.A.S. theorem and {Hl, H, }=
= 0: The equation is obtained with the explicit use of the Poisson operator.
From (1) one obtains by derivation

D,o,p,VH,—D_ 0,p, VH +
+ 19,7, VH,, p, VH, 1 + [p, VH,, 3,p, VH,] = 0.

Commutation of D, (resp. Ds) with 9, as derivations, on elements of the form
kaH, follows from the fact that the vector fields as sections of 7.% act as deriva-
tions on % (&) and hence on kaH as elements of a module, while aA is an
operation on the fibre of the module. Taking the (-, ')m product with n €k,
on has

(Dt a)\kaHZ’ 7})m - (Ds a}\kaffl, n)m + ([axkaH ’ pkaI]’ n)m +
+ ([p,VH,, 8,p, VH,], n),, = 0.

One also has
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(D,d, pNH,. ), = D8, p,Vil,. 1), — (3, p,VH,. D)

m "

and

m’

(,DS a/\kaHl, n),, = Ds(axkaH]‘ n)  — (8/\;)]\,\7[1]‘ Do

m

Using the expressions D= {p,VH,n]and Dn = [pk\7}13, 1} and the ad-invarian-
ce of the form (-, ), one obtains the desired relations. n

In the remainder of this paper we shall mainly be interested in the completely
integrable Poisson structures obtained from & (W).

2. COMPLETELY INTEGRABLE SYSTEMS ON A JET BUNDLE

In order to write the Hamiltonian vector fields, on k. over a jet bundle onc
needs a map o from the jetbundle into %' which allows onc to pull buck the
vector ficlds into evolution equations or more generally into P.D.E.’s. This map
o, which we will call a momentum operator, has to respect the graded structure
of k', Hence o must have a recurrence property and morcover the Hamiltonian
vector fields in k* have to be tangent to o. Such a map will obviously not ¢xist
for each completely integrable system, but a large class seem to satisfy this
condition. One hase in mind the KdV-system where the conservation laws reflect
the inverse limit structure of a k™.

In this paragraph we will give a formulation for systems in onc variable. In the
fourth paragraph we will see how this formulation generalises to more variables
and an example in three variables is presented.

All Poisson structures considered are purely local. Having the variable x on the
line or on the circle is merely the choice of an appropriate function space which
takes place on the level of the integration of a Cauchy probleni.

Let J be a jet bundle, which is the space of the jets of germs of clements in
¢ = C”(IR, R™). The dimension m will be chosen large cnough so that all
operations are possible without the introduction of supplementary P.D.E.s.
In each concrete case this can be made very precisc as will be seen. The variable
on IR will be x.

All P.D.E.’s will be supposed to be locally C”-integrable and will always be
identified with their prolonged submanifolds in J.

2.1. DEFINITION. Let o :J — k' be a map such that

(1) 3C".ie Nall PD.E.’s such that
(a) C'g C™* 1 Vi
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(b) o lci :C' > k* is a smooth map with values in a finite-dimensional trun-

cated subspace, and 7 o ¢ |Ci =0 IC,.,I, Vi.

(2) Vr, VH € F(k*"), the vector fields pkl[anHi, n]|, are tangent to o.

Then o is a momentum operator defining a differential operator
0:%6->C (R, kY.

2.2. DEFINITION. Let o be a momentum operator and S CJ a P.D.E.; then
o is holonomic if for each r IH, € F(k*") such that on S

D o =Pkl[o*anH0, o).

The equations S will be called the constraint equation and the C!, the trunca-
ting equations. One remarks that from the definition it follows that the set
{C'} defines invariant submanifolds of % for the system defined by &. The same
is true for the equation S.

The set {C'} defines on J an inverse sequence structure reflecting the structure
of k*, while S restricts the set % such that all elements in S are mapped into the
integral curves of the Hamiltonian vectorfield p, [p, VHO, nl.

This implies that the parameter 7, along the integral curves of this field coincid-
es with the variable x.

REMARKS. (a) For pratical reasons we will choose a trace form of rank two for
the function HO‘

(b) IfHy=(£,%),. & € ¥P? one has

r+ 2’

where VQ (resp. \70) is the gradient with respect to (-, -), (resp. (-, ~)0).
This allows us to choose (-, ), to define the orthogonals and the gradient
on % for the rest of this approach.

To facilitate the discussion we impose some conditions on the decompositions
we consider.

Condition (C). Let 6 j=nnN L, and & | =n NF 1% 2, then n satisfies
condition (C) if

WH)nnP2=%"1
(2) 6,+ ,Sfo
(3) &_,+#0.
Now for a fixed p let the Hamiltonian function H, be (¢, E)p_l on £P. Using
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one has

the coordinates (no, Npe--) and the notation o *7_ =0

0 VHy = p o N Tty oM.

We remark that the projection P 1s a projection in the fibre of the A-vector-
bundle over k*.

Now let ¥ :J -k be a smooth map with values in & n .4 and let o - J — k°
be a smooth map, solution of the equation

(i D.o=[¥, o0l

Then the equation S :0*p VH,= V¥ is a P.D.E. such that for each integrable
local section Jf in S. f € . the map o oJf is an integral curve of the vectorfield
(P VH,. 1] on kL

2.3. THEOREM. Let ¥, oand H, € A (kP) for some p. be as above.

(1) The following P.D.E.’s are equivalent on S
(a) D, ¥ *on*kaHi + V. o*p H]=0
(b) D, 0 = |o*p, VH, 0]

(2) The equations
(C) Dt-(a)\\p’ o)m = Dx(al\o*pkv]{i‘ O)n

1

are identically satisfied on (a).

Proof. The equations D o= [W. o] are satisfied identically on S. Hence from
prop. (1-2) it follows that the set (b) imply the equations (a). Moreover on S
one has pk(oﬁz)\"l +0_ 4+ 00)\) = . Because multiplication by A is ad-invariant.
the set (a) is a subset of (b). Now the proof of part (1) follows from the con-
struction of o, which will be given in paragraph three: namely each U4 depends
algebraically on ¥ and a finite number of Dx derivatives of W. Because all D!,
commute with D on (a) all other equations in (b) are prolongations of (a).
This proves part (1).
Part (2) follows from proposition (1-2) and part (1).

REMARK. (1) The theorem has a generalisation for non holonomic momentum
operators. For the proof of this one has to rely more heavily upon the con-
struction of 0.

(2) The equations (c), for a fixed i, are clements of the total cohomology of
equations (a). It is sufficient to write

0m = (9, W, 0),,dx + (9, G*VH,., o) di,.
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Then on (a) onc has dHBm = 0, where dH is the total de Rham operator on
equation (a) [5].

3) If 8)\x}/ is constant it follows from the previous theorem that system (a) has
a subset of equations which are conservation law type equations.
The resulting equations in (a) depend on the choice of ¥. To make sure that
this construction does not imply supplementary equations besides (a) we
need some more criteria avoiding this.

(4) One verifies that o, may be replaced by any derivation commuting with D
and the D for example D, or any D See for example also [19]. More
spec1ﬁca11y any symmetry vector field of equatlons (a) will do.

2.4. DEFINITION. A set of functions { ®; Li=1,...,% on a jet bundle, is func-
tionally totally independent (F.T.I).if each ¢; is functionally independent of all
other ¢, together with their total derivatives up to any order.

2.5. DEFINITION. A map f:J — N, with N an affine space, is smooth free map if
(1) fissmooth

(2) fis vertical on J. (f is independent of the base coordinate x)

(3) Im (f)is an affine subspace W of N

(4) the components of f with respect to any base in W are F.T.I.

2.6. THEOREM. Let ¥ :J -k N L1 be a smooth free map; then the P.D.E.’s
of (l.a) in theorem (2.3) are independent, i.e. the equations do not imply any
supplementary PD.E.’son S C J.

The proof of this theorem is straightforward.

Let ¢ be a momentum operator, holonomic on S, one then easily derives the
following proposition.

2.7. PROPOSITION. Let g be a real split semisiimple algebra. Then a set of neces-
sary conditions for o to be a momentum operator is given by

Qi(o) =constant, i=1,...,%,

where él. are the ad-invariant forms on ¥ constructed from the Q; on g (rank
g =1L

Consequently one finds that any o, solution of D o= (V,0], on §:¥ =
= o*kaHO, depends on the ad-invariant forms ¢J; in a parametric way. In other
terms: a given o selects a specific orbit of the coad (n)-action on W. A different
choice of these parameters defines a different inverse sequence structure {C7} on S.
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The selection of those ¢’s which define the same Dtio =lo*p VH, o], for a given
H,, determines different stratifications of solutions of this equation. For the sub-
sequent we will assume that g is a real split semisimple algebra, unless stated
otherwise.

One of the main problems in completely integrable systems is the problem of
reduction. Reductions of the equations appear in this approach on three levels.
namely by taking a different decomposition, by selecting different coad (11)-
-invariant subspaces W in k' and by taking transformations of the momentum
operator and thus changing the constraint equation S. We will give a short intro-
duction to these three possibilities.

(i) The selection of coad (n)-invariant subspaces W in k' The map ¢ has to
take values in W and hence by selecting W one imposes conditions on o as well
ason W.

From Prop. (2.7) we obtain the conditions (no. n,) = constant and (nO. n )=
= constant, defining coad (n)-invariant subspaces of Kt which will be used fre-
quently in the examples.

The following proposition allows one to select further submanifolds in &
The proof follows from the action P, . (p,VH,n] on s

2.8. PROPOSITION. Let V be a vector subspace ofP, witich is given by F(no) =0
with F a linear function. Then V is a coad (n)-invariant subspace of k' iff
Imad (V) =V.

If we restrict attention to the case dim V' =1 we distinguish two subcases.
case o : V is a regular semi simple subspace of g.
case § 117 is the l-dimensional root subspace g_, according to a root space
decomposition of g and § being the hithest root.
Both are clarly already reduction of the general case (170, n,) = constant.

2.9. PROPOSITION. Let V be as in the a-case. Then Ty has to be constant and
&,=0.

Proof. The Killing form is positive definite on the Cartan subalgebra containing
M- From this it follows that N, 18 constant. From proposition (2.8) onc finds
that cfo has to be a subalgebra of this Cartan subalgebra. But there does not
exists a decomposition of £’ into this & and a complementary subalgebra. .

2.10. PROPOSITION. Let V be as in the §-case. Then é‘ohas to be a subalgebra of
the Borel subalgebra of g constructed upon the negative root spaces and m Is
constant iff é”o is in the centraliser of g 5
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The proof follows directly from proposition (2.8).
Similar arguments can be used for further reduction.

(ii) The selection of different decompositions.

Let ¥ = n ¥k, =n,%k, be two decompositions both satisfying condition
(C) and let n; & n,; one has that kll C k;. This allows one to consider a subma-
nifold W C kll which is coad (”1) as well as coad ("2) invariant. The actions can
be compared which allows one to define a reduction of a given system.

2.11. PROPOSITION. Let n; and n, define two decompositions of < defined as
above gnd let n,=n,+m, with ny N £ = ny N ¥ = . Thesystem defined
by n, and a momentum operator 0 is a reduction of the system defined by n, if
by, © ad (m) (k*hy = 0.

REMARK. If m is an ideal in g, in case g is a more general Lie algebra, one has
Py, ° ad (m) = 0 and the condition is satisfied trivially.

To prove this proposition it suffices to write down the flow equations explici-
tly.

(iii) Transformations of the momentum operator.

Let 0 :J - k* be a holonomic momentum operator and G a transformation
group acting on k' by conjugation v =g -y - g~ L If v :J - G is a smooth map
and g € G we denote r*g by *g. Any momentum operator transforms under this
action as ¢ —> 0 = *g -0 - *g~1 while an evolution equation for o becomes

D,G=|D *g-*¢ 1,61+ *¢ D,o-*g L.
1 H i

2.12. PROPOSITION. Let ¥ :J - k! be a smooth map and let o :J - k* be an

holonomic momentum operator on S : o*kaHO: V. Then & = *go*g™lis an

holonomic momentum operator on S:*g-o*p VH;- *g=1 4 D, *g- *gml =
=*g W *¢g 1 forany map v :J — G.

REMARK. (1) Any G leaving k' invariant has to be a group with Lie algebra
{75(; & N [§ in gl In general one chooses elements of the group with Lie
algebra %% and more generally those elements leaving ¥ invariant.

(2) Neither the space k! nor the space 1 has to be invariant under G.

(3) This proposition also allows one to enlarge a given system of evolution
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equations by choosing v on a larger jet bundic.

Proof. 1t is sufficient to observe that tangency of the flows is conserved under
this type of transformation. The truncating equations transform accordingly
while the constraint equation transforms as given in the propostion. =

2.13. PROPOSITION. Let WV :J — k' be defined as before and let K be the sub-
group of G( ) leaving 0,V invariant. Then it follows from the ad-invariance
of the forms (., .)m that the conservation laws (2.3(¢)) are invariant under K.

If in addition 9, ¥ is constant then the conservation laws arc a subset of the
Backlund equations. Hence one may look for a reduction to select the conserva-
tion laws out of the Backlund equations. We will show that this is not always
possible in the examples. In the case § onc obtains in this way the systems given
by V.G. Drinfeld and V.V. Sokolov [7].

As a final remark one sees that if v is taken constant onc is able to construct
parameter families of complete integrable systems. We will show as an example
how the I-parameter family given by B. Kuperschmidt relating MKdV and KdV
is obtained in this way. This situation is very interesting because the integration
of the flows on the Lie algebra is the same tor all members of the family.

3. CONSTRUCTION OF MOMENTUM OPERATORS

The construction of a momentum operator is central for the construction of
completely integrable systems as well as for the understanding of their structure.
This paragraph is based upon two basic constructions for a simple Lie algebru.
Both constructions are then easily adapted to other decompositions. This will
be shown for some particular cases arising from the decomposition appearing
in[2].

Let g be a simple Lie algebra of rank ¢ and ¢ a root system for g.{ ¢, | is the
set of simple roots, § the highest root and / the Cartan subalgebra. With respect
to the corresponding rootspace decomposition of g, b will be the Borel subalgebra
constructed on the negative rootsubspace. The natural grading given by the heights
of the roots will be indicated by means of the parameter p. Then for £ < g one
has £ = X & p? We recall that there exist U traceforms { @, . which gencrate the
ad-invariant polynomials on g.

The two next lemmas are formulated on the Kac-Moody-Lic algebra construct-
ed from g. The first lemma is due to G. Wilson. It will be presented without proof.
Because we are interested in holonomic momentum operators we want 1o have
a very partical solution of the given equations. This is the reason why the lemmas
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are presented in this specific form.

3.1. LEMMA. (G. Wilson [22]). Let V¥ = Yo+ Ay, with Yoo Y, :J ~g smooth
maps, J any jet bundle, Y, constant and regular in h and L,l/o with values in h'.
Then there exists a o :J— &9 uniquely defined by the set of constants
{E’.].Ii: I....,%j=1,...., 0 }and the requirements

(a) 00: ll/]

(b) Qo) = £ E N, withEy=0,(¥))
j=0

(c) Do =[¥,o0]

REMARK. Using the fact that any o :J — »0 solving (c) has to have its highest
element in A, it is easy to select the solution given in this lemma from the set of
solutions given by G. Wilson. As it is indicated by G. Wilson one can generalise
this lemma to those ¥ with y, constant in any Cartan subalgebra of g.

3.2. LEMMA. Let ¥ =y  + Ay, with wo, Y,:J —g smooth maps, J any jet-
bundle, wl constant in g 4 and L,’/O =B+ ZXexpg,- €y, - B takes values in b. If
rank g = 2 one requires that (t1/0~ xj/l) = 1. Then there exists a unique solution
o:J > O defined by the set of constants (Egli=1 . gj=1,... 0}
and the requirement

(3) 00 = ll/l
(b) ©,(0) :,Eo Ly >\"",El.0 =0,E,=0,i#%
(¢) on =.[¥, o].

This lemma will be proven by means of the following statements, which consti-
tuite the construction of the solution. One observes that the set of solutions is
a linear space. Hence it is sufficient to prove the existence for £, # 0 and Eil. =0,
j=2

STATEMENT 1. Each equation

D&, = [y, £,

with £ €g and a the grading index of g, contains only ¢-terms of height >z a — 1.
Moreover each element of height ¢ — 1 is multiplied by a non negative element
(of height 1) in d/o.

STATEMENT 2. There exists a partition B, containing £ classes, of the set of root
subspaces and base spaces of i (with respect to &), such that each class of B is
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an ordered set. Moreover the partition B itself is an ordered set. the ordering
being given by the height of the largest element of cach class.

Let a=1,..., ¢ be the class index, which is taken in agreement with this
ordering: the coordinates of the highest (resp. lowest) elements of the classes
are denoted by ( T£%) (resp. (" £%)).

STATEMENT 3. The set of equations
(D D=y, £

is equivalent to

(2) £ Pi(T o)

and the £ remaining equations

(3) D (TEY) = "([y,. ED°.

The P! are differential operators in D, with coefficients in # {J). Substitution
of (2) in (3) gives the recursion relations on the set ( *£).

STATEMENT 4. The equations D Q@ (§) =0, i=1..... ¢. are necessary condi-
tions for the equations (1).

STATEMENT 5. Consider the equations
(4) D t=[y,+ 2. £l te £
(a) The equations (4) reduce to
(5) £ =PI(*£%)
and the £ recursion relations
(6) R (TE) =0.

(b) For all £ of positive and zero height, the corresponding operators P are
independent of A.

(c) For all ¢ of negative height, the corresponding operators P; are linear in A.

(d) The image of the linear part in A of each operator P!, of height —a. is a
polynomial over .# (J). which is linear in the variables D;* £, 0<r<a.
d—a+r—1<m_ <d—1, where d is the Coxcternumber and m_ = the

exponent correspondig with the ordered class o

(e) Substitution in AQ,(£) = constant and Q,(£) = 0, i # &, of (5) together with
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TEL=) AN, Ag#0
i=0

tro o Z BN a#],

i=1

gives the unique solution o :J - ¥ of lemma (3.2).

The proofs of the statements 1 to 4 are straightforward while the proof of
statement 5 (specially (e)) requires an explicit use of the ad-invariant traceforms
for the different simple Lie algebras.

Both lemmas will be used to construct holonomic momentum operators for
some specific decompositions.

According to the work of M. Adler and P. Van Moerbeke we distinguish two
basic types of decompositions.

(1) The spinning top types
Here & =n @ k satisfies condition (C)and k N &, = &,.
Such decompositions contain the decompositions considered by W. Symes,
determined by parabolic subalgebras of g [20].

(2) The Toda types

Consider the algebra .’ which is obtained from £ by the condition A = ¢,
where d is the Coxeter number of g. Let 7 be the Cartan conjugation given
by

¥ >
(§;u") > (071,
Letn=%_o&,, with &, =>b, and define
k={tc L' |t=—T1)
This decomposition satisfies condition (C).

Both types of decomposition are discussed shortly and it will be shown how
the two lemmas are applied.

1. The spinning top types (with 1 = &)
(a) un is constant.

oecase: Mg =e_,
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Because n | = lno. v lowith ¢ | the component in & L 2 or p, V. tor an
Hec #Y, one finds that 7 l

Ny=¢ =7+ M) € where y are the coordinates on the Borelsubalgebra

C Imad (V) This mmplies that W defined by

b.is coad (n)-invariant.
The commuting flows determined by the quadratic forms in /(W) are deter
mined by the gradients:

p.VH, =1 r+?\nr+l+..,+7\’no.

Let ¥ be as in lemma (3.2) and o :J — k' a solution of the equation D o =
= [V, o]. The constraint equation using H, becomes

S0 = Vy-
The following properties are easily verified.

3.3.PROPERTIES. (1) Equation S implies that ¢, = 0, Vi (the ¢; determined as in

lemma 3.2).

(2) The components of the equation ¢ L= p’/o which lie in the Cartan subalgebra
are identities.

(3) If ¥ is a smooth free map and if B is of maximal rank. then any o as in lemma
(3.2) is a momentum operator which is holonomic on S.

One observes that the decomposition in invariant under the adjoint action of
(}(5’0). Moreover the subgroup generated by the nilpotent subalgebra in b
leaves the manifold Q invariant. The constraint equations become

vo+Dgg '=0 .

Using the reduction procedure as defined above one obtains a representation of
¢ equations. Any transformation from one representation to another one is
given by a Miura-type transformation (sec V. Drinfeld, V. Sokolov). Beuaring
in mind that the conservation laws arc invariant under this type of transfor-
mation, this set does contain the conservation laws.

Further reductions of these systems are obtained from a decomposition with
&y# 0, such that [&,. ¢ ]=0, orby & | #.& L 2 or by the use of tran-
sformations in G(.& ).

p-case
ng =1 . with i regularin A.
k\l QI
In this case one finds that 170 C Imad (ny). This allows us to define Wby 7, - /1|
i

and (X.n )=0, VXeEn
The following propertics are easily verified.
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3.4 PROPERTIES. Let W and o be asin lemma (3.1) and let
Sio_ =Y,
Then

(1) S is satisfied identically

(2) if ¥ is a smooth free map and if ¥, with values in Im (ad ) is of maximal
rank, then any o as in lemma (3.1) is a holonomic momentum operator.

The subgroup of G(.%) leaving h_ invariant is the %-dimensional abelian
i
subgroup generated by /. But the situation is less rich than in the former case.

As a consequence of proposition (2.9) no reductions by choosing é’oaﬁ 0 are
possible.

(b) 7, is non constant.

Following proposition (2.9) one is only left with case §.

Let = e/e_ . This implies that &, C b with &, N/ = ¢.

Lemma (3.2) generalises to this case and with ¥ a free smooth map satisfying
the rank conditions one finds o te be a momentum operator which is holonomic
onS:o_, =y,

Reductions of these systems are constructed in a similar fashion to the above.

2. The Toda types

Let ¥ =nek be a Toda type decomposition; then k' are the symmetric
elements in .&".

The o-case is excluded as follows from proposition (2.9).

Let un be in the space g g then 1}0;& 0 for some Hamiltonian flow. Lemma
(3.2) generalises to the following case:
Let ¥ =—2A"! J/I + L,’)O—— \1/6 +)\l//1 with ¢, =efe43 and 11/0= Zexp ;- e, Then,
together with similar conditions as in (3.2), there exists a solution ¢ of the equa-
tion D o =[¥,0],0:J > 20 whit 0, = ¥, If in addition the set{f, ¢, }is a free
set of maximal rank and if rank g >> 2, then o is a momentum operator. If the
Lie algebra g is an A, algebra, then the condition (x[/o, ¥ ,) = constant implies
that ¢ = — f. Any non constant function f defines a momentum operator.

REMARKS AND GENERALISATIONS. (1) The above cases show already how the
two lemmas have to be generalised to cover other types of decompositions.

1 .
More specific choices for ¥ as for example ¥ = Z x,l/iN are possible as
i=—p



(2)

(3)

4)
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long as the highest terms remain as in the lemmas and the u’/l. are determined
on a given decomposition n & k.

Also more terms in the positive powers arc possible. If n = %Y one sets
W =A-y,. The Backlund equations themselves now becomes flows of a
coadjoint action.

In order to describe systems in more variables, the above constructions may

be generalized in the following way.
14 . .
Let g = ;0 gl.a’. with a1 =0,1 0or—1.and g any simple (real) Lie algebra.

One then constructs the Kac-Moody-Lie algebra over g. The equation defining
the momentum operator is now given by

Lo=1[¥, o]
with
p .
L=Y ab
v

and W :J - k' J is now a jetbundle of elements in €™ (IR?, IR""). The choice
of ¥ has to be in agreement with some generalised formulation of the le-
mas. Examples will be given in the next paragraph.

More exotic operators (including projection operators) can be taken for L.
The main point being that the variables (x!) have to intertwine with the Lic

algebra structure.

The reductions obtained from G (¥ ) are studied by V. Drinfeld - V. Sokolov
[7]. They also give the main lemma to deal with these reductions.

G. Wilson {22] showed that there exists a transformation in the Lie algebra
SFrelating a special reduction of case « with a special reduction of case .
This class contain the systems described by B. Kuperschmidt and G. Wilson
{14] [15] using the cyclic elements in g¢(n, €), the TD-systems described by
G. Wilson [22] and the systems described by V. Drinfel’d and V. Sokolov
[7]. We recall that the class of Toda-type systems we consider do not contain
the 2 TD-sytems defined by G. Wilson.

4. EXAMPLES

(a)

Examples on s/(2, IR).

Let (e, €,. e;) be a base for s/(2. R) such that [cl. ezj =e,. [cl. e3] = 2e,.
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[ez,e3] = e5. The coordinates on J are (x,u,v, U, v, u ...) and
the map ¥ is defined by ¥ = (uel + ve,— e3) + )\el.

The solution of Do = [V, o], as given by lemma (3.2) is defined as follows.

Let £3 = ?lA,,.?\"'; then one has

xx’ vxx ’

1
£l = y (D}—D,-v—2wWA_ ,—A_,_,

£, =(D,—v)A_,.
The remaining equation is

(D} +vD}—D2v—2D _u—2uD —vD v)§=4AD_§3,
which is solved by means of the Killing form:

ANE3ES 4 @Gu + 20 + V)P + DEDE - 283D =4+ E N2
where the E_ s are constants fixing the orbit. Substitution of £3 with A_ =
=1 yields

: 2

A_,= -é— [E_,—4u-—-2v —v?]

1

) ,
A E_y+ —ID}—E,+64 4.,

1
-3 g

This defines ¢ completely. The Ci are given by A_i =0.

Example (1)

n=%, k=%0%,, k=% W={nek!|ny=—e,mepn_) =1}

+°

The elements in .« (W) for a given p € N and W C k*? are generated by:
H , =, E,,)
H_,=2(,.§ )

H—'l = 7(Ep’ 50) + 2(Ep*1’ El) +...
Hy= 205, £ )+ 205, 1 E)+- -

Hy =205, 5, )+ 20, 1§ )+ .+ 25 &)
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It is casily found that the flows of H po H , are tovial on W, while
the other flows at each point p € W span the tangent space of a Lagrangiun
manifold ot the orbit through p of the coadjoint action of G(n). In the inverse
limit structurc the Hamiltonian vectorfields arc defined by the gradients:

p VI | =n_;+ A\ +,..+>\i7)().

it 1

According to theorem (2.3) any flow
D0 = lo*pVH, ]

is determined by D,A\’uo. The Bidcklund equation gives
u, = D—v)4d_

i1

The constraint equation becomes

1
S:0=v + . (E_,—4u-- v2).
The first non trivial flow is

1 I
v :—g(v”vaUxu'\p F 2U}\_)-4— EE ..

3

The systems are completely integrable for each term in the inverse limit. This
is checked by defining the dimension of on (C’x in each space k7.

Example (2)
Let 8 € R and define the 1-parameter family of decompositions by
n=29_#%IRe,
k=Rie,—Be,+ 82/ e+ Rie,—Ble)t &
k' =IR(e;—Be, + 62/481) A

which is defined by a null rotation in EV2=51(2, R). Projection upon & is
defined by

P.(ae; + be,+cey) = (b +cB)e,— Bl e)) +cle,—fe, +B2 000

The Hamiltonians H pot H ., are trivial on W C A*" and the constraint

cquation is

Su=—pv+ 4
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The flows are, for E,=0.i>2
v, =DD —v+PA_,
which gives fori = 2

1 3 3

— 2 2
vt——z vxxx——2—u vx+3vax——2—B v |

This is the 1-parameter family due to B. Kupershmidt [12].

Example (3)

Consider the decomposition n=%_ ®Re ®Re, and k=2 oRe;.
It is sufficient to use

'Y =e”fe3+ )\efel

as is easily seen from the form of k.
This gives from D o = [¥, 0]

1
t1= — (e - £.D +e¥D?+ 2ne?N) ¢3
2
_ 3
(l=— efDxi' .
Constancy of the Killing form gives, with £, = 0,i > 2.
= e-f

A—l

1
A== e QL+ 1)
2

etc.

and¢?= £ 4\

The flows are given by D"e’f = D_A_,. The first nontrivial equation is
) 1
f=== (2 fopx = LSS

One remarks that the constraint equation S is trivially satisfied.

Example (4)
Considern = £ 2o (Re,® Re)N 1o R e,

- -1
k=Re, N 'o(Re,oRey) e L .
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The submanifold W is defined by Ny =€, 77}1 = 1. It is sufficient to write
V= we, N 1+(e3+ve2)+el-)\.

The equation D § = [¥, {] has a solution with

1 a_ i
¢l= -——{——) D,—~v)+ —DAD, --v) + 2 o3
2« « «@ .

1
2=— —Dx—v)8. a=1+Artw,

[0

and
; 6 1 | 1 R

¢ _F-A A ~A,1:l A 2:? w+;u+zv“ .....

which defines the equation

1 1
S:w=—uv + —v2.
27 4

The first nontrivial evolution equation is

1
V= — " (U p + U0, — vzvx).
Example (5)
Using lemma (3.1) and
V=ue +we;+N-ae, (a=1ori)

Then withu =% _and k =& ¢ £ one finds if

(i) @ =1 and using the reduction v = w: the MKdV-equation, or if one sets
1: the KdV-equation

w
(ii) a =i and using ¥ = @: the nonlinear Schroédinger equation.

In all these cases there is no constraint equation. These examples are now well

known.

Example (6)

Using the Toda type decomposition one needs to consider

V=ele - Nl+e e, +ey)+eles -\
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Remark that in this basis T(el) =—e,. The equation Dxf = {¥, {] defines
1 1 1
¢t'=|—D_—D +—(e” f+7\ef)]§3
20 o o
i
¢2=——D33, with a=e/+x1-ef

[44

Substitution in Q({) = — 4 yields with {3= £ A N

i=1

1 1
An=el A,=— [e—fe2f—e~2f+: (zf;rx-*_f;:f;r)]

Then obviously ¥ _—-Pk((L1 + )\00) and hence there is no constraint equation.

We set
= 2
¢ =F(0_,+No_, +A%0),

then the Backlund equation D,y —D_¢ + [V, ¢] = O yields
. 1 1
f=——2— 3 +eN)f + ——(2j;xx+ffx);)].

Example (7)
Letn = %% k=%, and set
¥ = Nue, + ve, +we,),
with —4uw + v2=—1.
The equation D _{ = [V, {] has a solution given by
1 1
fl= —— | D, — (D, —\v) + 2hu|$3
2 w Aw

1
§2=__):_(Dx—>\u)§33 w;&O’
w

— -1 _ -
_ZA_,)\ VA=, A =-wy two,. ...

The equations are

33
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i

D[l_oo =D.o
and the equation S is trivial. The first non-trivial equation is
F=—v tolf +1 1)
D=(—vu 4 £l 1))
with w = ¢/,
One finds that the flows do not span a Lagrangian submanifold of an orbit
¢, in kP Completely integrability follows from a more detailed analysis of
the inverse limit structure.

(b) Examples on graded Lie algebras over s 1(2. IR).

Example (1)
Consider the Lie algebra g = & +a-g, with a’=0and 8,8, =% 12, R).
Let ¥ = (ue, +ve,—ey) +alfe, +ge,) + )xe], then once verifies that the
equation (D, + aD\,)§ = [, ¢] has a solution 0 :J — .Y such that 0,= ¢, Let
K be the Killing form on s 1(2, IR): then

K (K 0 i K ( 0 K )
= an 5 =
110 o0 ) > Kk o

are ad-invariant forms on g. These forms allows one to solve the recurrence

g

equations. If one chooses the decomposition n =% .k = 7+ ¢ . the equa-

tion S is
1 i )
ll:—z-vxﬁzU"
1 1 1
f=——w+—_-g+—-uv,
b o I 5

and the first non trivial equation is

- 1 l
U= — Z Uiy T = v oU,
1 3
&= " Z g.\'x.\' o I U-\‘.\'J‘ o U.\‘ (g.\' + U)‘ ).

Remark that ¢ = 1 vields nothing new because then the Lic algebra decomposes

into g, +g, andg, —g,.
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Example (2)

Consider g = g, + ag, + a’g; witha® =l and g, ~g, ~ g, ~s1(2, R).
Let ¥ =(@uv,—1)7 +a(f,g0)7 +aXp,q,07 +A(1,0,0)" and let {=
={+an+a’p be coordinates on . . The equation (Dx+aDy+a2DZ) T=

= [, ¢] has a solution o :J - 9 which is found using the ad-invariant forms

0 K 0 0 0 K K 0 0
K,=|K 0 0|,K,=|0 K Of,K;=10 0 K|.
0 0 K K 0 0 0 K 0

Lete, =¢, +ae, + azei and the 1-parameter family

We define the splitting
n=% eR-€, k=% eRe,eRe,,
which yields the constraint equations

1 1
u=—pI——p-v
4 2

1

S:f=——0b¢g
2
1
p=—=8q
2

The flows are given by
v=PA_)+P(B_)+P(E_)
g= PiB_)+P(E )+ P(A_D
d :PI(E—i) +P2(A,,~) +P3(Bfi)

with
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CE N and A4 =1

(7"
(9]
|
I.‘L
>
=3
W
]
2]
>
ko
[¥%)
Il
It ‘/[g

i=1 i=2 2
1 1 1oy 1 1
A_2—~g[2(Dx+Ev—ﬁ)v+2(Dy-L5g)q+2(Dz+5q)g:|_Eﬁz
1 I I PR
B ,=- r [2(Dx+; u—ﬂ)g+2(Dy+5g v+ 2(D2+E ql)qJ
1 1 1\ { 1y
E 2_—;;—[2 D, + 5 u—B)q+2(Dy+ ;g)g+ 2(Dz+ ?q)UJ

The operators P, are given by
P =D(D,—v—p)+ Dy(Dz —q)+ DZ(Dy —g)
P, = D (D,—q) + D},(Dy —8+D,D, —~v—p)
P, = Dx(Dy —8)+ Dy(Dx —v—8+D,(D,—q).

One observes that on the line x = y = z this equation reduces to the 1-parameter
family of example (@ — 2).

I like to thank P. van Moerbeke, M. Adler and R. Palais for the kind hospitality
they offered me at Brandeis University, where a large part of this paper was
worked out.

Addendum. In [24] Flaschka, Newell and Ratiu derive the A.K.N.S. equations from the
Kostant - Adler-Symes theorem on the Kac-Moody Lie algebra ¥ constructed from s 1(2, €) and
using the specific decomposition of & into ¥ _ and ¥ ,® ¥ . These are the equations
mentioned in example (5), which have been worked out for more general Lie algebras in [22]
and [14]. If one considers the x-parameter along the integral curve of the Hamiltonian vector
field determined by Hy = (§,{)p-1 on £ P, for a given p € N, as is done is these examples,
the constraint equations are trivially satisfied and hence the momentum operator is holonomic
for each orbit. This is no longer true for the other Hamiltonians, which imposes constraint
equations on the function space if one integrates the finite zone solutions on the Jacobian
associated with the orbit [25].

In [24] the aim of the authors is to determine the link between the Kac-Moody structure
with the 7-functions (references are given in [24]). It is however not clear how the results of
[24] generalise the other Lie algebras and other systems of P.D.E.’s. The Hamiltonian form,
which is worked out in detail in these papers, depends upon the type of decomposition of
% and the type of invariant submanifold W C kL one chooses in the inverse limit space. It
seems that the introduction of the momentum operator clarifies a lot in the relation between
the flows on the Kac-Moody Lie algebra and the commuting P.D.E’s. In particular it determines
the connection with the work of Bubrovin [8] a.o. and with the finite zone solutions of some
field equations, as is shown in [25].

In [24] a second Lie algebraic interpretation is given of the same equations in terms of the
translated-invariants theorem of Kostant. The conservation laws are derived in a less general
form as we do here and in [25].
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